When automorphisms of P ( κ ) / [ κ ] < א 0 are trivial off a

نویسندگان

  • Saharon Shelah
  • Juris Steprāns
چکیده

It is shown that if κ > 2א0 and κ is less than the first inaccessible cardinal then every automorphism of P(κ)/[κ]<א0 is trivial outside of a set of cardinality 2א0 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple Proof of Silver’s Theorem

By using combinatorial properties of stationary sets, we give a simple proof of some generalization of Silver’s Theorem i.e. if κ is an uncountable regular cardinal such that אκ is a singular strong limit cardinal, then the following hold. (1). If {α < κ : א<κ α ≤ אα·2} is stationary, then 2אκ ≤ אκ·2. (2). If {α < κ : א<κ α ≤ אα+γ}, where 0 < γ < κ, is stationary, then 2אκ ≤ אκ+γ.

متن کامل

Nontrivial Automorphisms of P(n)/[n]0 from Variants of Small Dominating Number

It is shown that if various cardinal invariants of the continuum related to d are equal to א1 then there is a nontrivial automorphism of P(N)/[N]0 . Some of these results extend to automorphisms of P(κ)/[κ] if κ is inaccessible.

متن کامل

Two Results in Combinatorial Set Theory

In this note we sketch the proofs of two results in combinatorial set theory. The common theme of the results is singular cardinal combinatorics: they involve the interaction between forcing, large cardinals, PCF theory and versions of Jensen’s weak square principle. 1. Changing cofinality Our first result involves an old question about changes of cofinality. Suppose that V,W are inner models o...

متن کامل

Isomorphisms of Infinite Steiner Triple Systems II

A combinatorial method in conjuction with the results presented in [F] is introduced to prove that for any infinite cardinal κ, and every cardinal λ, 0≤λ≤κ, there are 2 mutually non-isomorphic Steiner triple systems of size κ that admit exactly 2 automorphisms. In particular, there are 2 mutually non-isomorphic rigid Steiner triple systems of size κ.

متن کامل

Convergent Sequences in Minimal Groups

A Hausdorff topological group G is minimal if every continuous isomorphism f : G → H between G and a Hausdorff topological group H is open. Clearly, every compact Hausdorff group is minimal. It is well known that every infinite compact Hausdorff group contains a non-trivial convergent sequence. We extend this result to minimal abelian groups by proving that every infinite minimal abelian group ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016